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A cylindrically symmetrical  Pat terson is calculated for a simple structure containing straight,  
parallel helical chains. This is used to calculate composite vector maps representing structures in 
which the chains run in different directions. These maps show considerable spreading of the vector  
density. I t  is concluded tha t  the features exhibi ted by the Pat terson function for horse methaemo-  
globin, in the regions approximately  5 and l0 A from the origin, do not  conflict with the  idea tha t  
the structure contains helical chains. 

1. I n t r o d u c t i o n  

The helix shown in Fig. 1 arose in connection with 
another problem (Bunn & Howells, 1954). I t  has a 
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Fig. 1. Helical chain used in the Patterson calculations. One 
repeat length, containing thirteen CF~ groups, is shown. 

back-bone consisting of 13 carbon atoms per repeat 
length, in which there are 6 turns. Two fluorine atoms 
are attached to each carbon. Although the helix is 
of such a simple nature the conclusions we shall reach 
will be capable of extension to structures containing 
more complex chains. The presence of side groups 
containing several atoms would merely result in 
~reater complexity in the vector map ~nd would 
increase the smoothing effects discussed below. Again, 
the composite vector maps we shall construct corres- 
pond to rather special arrangements of chains which 
are chosen so as to simplify the Patterson calculations. 
The configurations studied do not correspond in detail 
to a physically plausible structure for haemoglobin, 
but they are likely to result in less smoothing of vectors 
than would occur in the actual molecule. On both 
counts, therefore, we tend to underestimate the 
spreading of vectors associated with the haemoglobin 
crystal. 

2. T h e  cy l indr i ca l  P a t t e r s o n  

The X-ray intensities were calculated, for the above 
helix, at reciprocal lattice points corresponding to a 
regular hexagonal lattice with a = 5.5, c = 16-8 A. 
These intensity values, I(1, $), were used to calculate 
a cylindrical Patterson function given by the MacGil- 
lavry & Bruins (1948) equations 

q~(x) = ZI(1, $).J0(2~$x) 
and 

~(z, x) = ~ qz(x) cos (2n/z) , 
l 

where $2 is the Bernal coordinate and Jo is the zero- 
order Bessel function. 

A Debye-Waller temperature factor, with B = 
8.0 x 10 -is cm. 2, was applied to the calculated inten- 
sities. All reflexions from planes of spacing greater 
than 1.3 A were included in the summation; those 
from planes of spacing equal to 1.29 /~, or less, were 
omitted. The reason for not including the 1-29 A 
reflexion, which corresponds to planes perpendicular 
to the helix axis through each carbon atom, will be 
obvious in the discussion below. 

Fig. 2 shows the Patterson map. Contours are drawn 
at intervals of 5 units on an arbitrary scale and those 
below average are broken. The origin peak is 90. I(000), 
which has been included, has the value 16. The distri- 
bution of vectors forms what may be called a face- 
centred array of regions of above-average vector den- 
sity. The series of peaks along x = 0, spaced at inter- 
vals of 2.5 /~, corresponds to multiples of the C-C-C 
distance in one chain, A similar system of peaks along 
x = 5-5 A corresponds to the vectors between nearest 
neighbour chains. Peaks occur at the same z coordinate 
on these two lines because each chain in the structure 
is at the same height in the c direction. 

I t  is noticeable that  certain of the peaks are elon- 
gated (or even split) in the x direction. This is because 
the helix operation acting on a vector which is not, 
parallel to the chain axis reproduces it in several 
positions in the surface of a cone. The above-average 
areas of density along x = 2-7 /~ are due to vectors 
between side groups separated by an odd number of 
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Fig. 2. Cylindrical  P a t t e r s o n  func t ion  of a s t ruc tu re  composed  of infinite paral lel  helices (as in Fig. 1) a r ranged  
on a hexagona l  la t t ice  for  which  a---- 5.5 /~ and  v---- 16.8 /k. Contours  in the  origin peak  are omi t t ed .  

C-C distances in the same chain, and between side 
groups in neighbouring chains. I t  is to be expected 
that  these two kinds of vector should have an average 
x component of about one-half the distance between 
chains. Finally, we note the general feature of the 
Patterson diagram, namely, that  its appearance clearly 
indicates the chain direction. For, although the posi- 
tion of peaks could be interpreted in terms of chains 
running in a number of directions, the general peak 
shape and the outstanding height of those along the 
c axis leaves no doubt that  the chains are parallel 
to c. 

3. Composi te  vector m a p s  

We now try  to obtain a qualitative picture of the vector 
distributions corresponding to more complex arrange- 
ments of chains. Consider a bundle of helical chains 
packed together straight and parallel, as in the ideal 
structure above. Suppose we construct a molecule 
consisting of a number of such bundles with their 
chain directions distributed uniformly in the surface 
of a cone of semi-vertical angle 10 °. The axis of the 
cone may be called the mean chain direction of the 
molecule. Let the molecules form a crystal structure 
with the mean chain direction of each lying parallel 
to the Z axis. 

I t  is clear that  the cylindrical Patterson of such a 
structure will be similar to that  for the case of parallel 
chains but there will be a spreading of vector density 
caused by the misorientation introduced. 

:Neglecting the vectors between different bundles of 
chains, the vector map may be formed by drawing the 
Z axis at 10 ° to z in Fig. 2, and rotating about Z. 
This approximation is justifiable on the grounds that  

when the bundles of chains are large the Patterson 
function of the whole array is, near the origin, just 
the superposition of all the self-Pattersons of the 
bundles. 'Near the origin' here means within a sphere 
of radius equal approximately to the distance be- 
tween chains. The cylindrical Patterson constructed 
in this way (Fig. 3) illustrates how a structure con- 
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Fig. 3. Composi te  cyl indrical  vec to r  m a p  represent ing  a s t ruc-  
tu re  in which  the  helices are a l lowed to  dev ia t e  b y  l0  ° 
f rom the  m e a n  chain direct ion (Z). Contours  in the  origin 
p e a k  are omi t t ed .  

taining helices which are all approximately parallel 
to one direction can give a considerable smearing of 
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the inter-side-group vectors (~ 3 A) and of the vec- 
tors about 5.5/~ long. The vector density in spherical 
shells of radii about 3 A and 5.5 A is everywhere 
above average. There is, however, a marked concen- 
tration of density (for the 3 A vectors) into spherical 
caps centred on the Z axis. Thus the diagram is uni- 
axial and there could hardly be an ambiguity in select- 
ing the mean chain direction. 

The next step is to enquire into the effect of having 
more than one chain direction in the molecule. Sup- 
pose that  the molecule contains one set of chains in 
the direction of the Z axis (with the same departure 
from exact parallelism as above), and another similar 
set with its mean chain direction perpendicular to Z. 
The Patterson map of such a structure may be cal- 
culated approximately by superposing two maps at 
right angles, one for each half of the molecule. This 
takes no account of the vectors between the two halves, 
but these may be considered negligible if the molecule 
is large. The features of the resultant three-dimensional 
vector distribution may be summarized by drawing 
two central sections. Fig. 4 shows a section parallel 
to the plane of the two chain directions. I t  is seen to 
be almost completely circularly symmetrical in that  
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Fig.  4. Cent ra l  sect ion of the  th ree -d imens iona l  P a t t e r s o n  
func t ion  of a s t ruc tu re  con ta in ing  two sets of chains.  The  
m e a n  chain  d i rec t ion  of one set  is a long Z,  and  of the  o the r  
is along X. Where ambiguity exists, contours are numbered, 
on an  a r b i t r a r y  scale. Origin peak  con tours  are omi t t ed .  

the 3/~ and 5.5 A shells of above-average vector den- 
sity show only faint indication of the chain directions. 
A central section perpendicular to one chain direction 
will be practically identical to Fig. 3. 

Summing up, the three-dimensional Patterson of the 
kind of structure we have envisaged is n~oticeably 
biaxial. However, the spread of vectors is larger than 
might be expected in view of the small departure from 

parallelism permitted in the chains of each half of the 
molecule. 

4. Horse methaemoglob in  

The diameters (3 A and 5 A) of the shells of vector 
density, discussed above, result directly from the 
average inter-side-group distances and from the dis- 
tance between chains. If we had taken the Pauling 
a-helix as the basis of calculations, the main features 
of the Patterson diagrams would have been similar 
but the shells of high vector density would have had 
diameters of 5 and 10 A approximately. These vector 
shells are observed in the three-dimensional Patterson 
of horse methaemoglobin (Perutz, 1949) and there 
arises the question, 'Is the vector distribution in them 
compatible with a structure comprising a-helices (or 
similar helical chains)?'. Wrinch (1953a, b) describes 
the 5 /~ vectors as an 'essentially three-dimensional 
distribution' and concludes that  'there is no confirma- 
tion of the hypothesis of rod-like polypeptide chains 
in the crystal'. The present investigation indicates 
that  Wrinch's conclusion is unjustified. In the first 
place the 5 /~ vectors in haemoglobin do not ap- 
proximate closely to spherical symmetry. As Perutz 
describes it, 'the vector density varies within wide 
limits in different parts of the shell'. Thus the distribu- 
tion can be called essentially three-dimensional only 
in the limited sense that  the vector density is above 
average everywhere at a distance of 5 /~ from the 
origin. This is equally true of the approximate vector 
map we calculated above for a chain-like structure 
with two widely different chain directions. In fact the 
general appearance of the vector distribution in the 
hypothetical case we have considered is similar to that  
observed in haemoglobin. This is especially noticeable 
in looking at Fig. 3 here and Perutz's (1949) Fig. l(b). 
I t  is likely on general packing grounds that  Pauling 
~-helices should pack together with neighbouring chains 
making an angle of about 20 ° with each other at any 
point (Crick, 1953). Consequently, the departure from 
parallelism in the actual haemoglobin molecule would 
be of a different kind from that  in our model, where 
neighbouring chains are parallel and the misorientation 
occurs between widely separated groups. Thus a more 
physically real model would involve additional dis- 
persion of the vectors between neighbouring helices. 
Therefore, the vector diagrams obtained here probably 
underestimate the smearing to be expected in Patter- 
sons of structures in which helical chains are packed 
with the side-groups of one fitting into the spaces 
between the side-groups of its neighbours. 

The Fourier transform of a helix has a marked 
feature which we have so far left out of account. 
For the c~-helix this corresponds to the strong dif- 
fraction by planes perpendicular to the chain axis and 
1.5 J~ apart. This high-angle diffracted intensity is 
concentrated into one reflexion when all the chains 
are straight and parallel. In the type of structure 
discussed above the misorientation would cause a 
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slight spread, but  there  would no t  be spherical smooth- 
ing to the  same exten t  as in the  5 and 10 A reflexions, 
which are more numerous  and  a t  lower angles. The 
1.5/t~ reflexion is, therefore, of considerable significance 
in deciding between a chain s t ructure  and  a three- 
d imensional  net,  and  i t  is more profi table to s tudy  the  
diffract ion pa t t e rn  at  high angles ra ther  t h a n  the  
near-origin regions of the  Pa t t e r son  function.  If, for 
example,  there  are found to be several areas of high 
in tens i ty  on the  surface of the  1.5 A sphere in reci- 
procal  space, there  is a s trong presumpt ion  t h a t  the  

s t ructure  contains chains parallel  to  the  directions 
joining these areas to the  origin. 
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The crystal structure of the a phase in the iron-chromium system at 46.5 atomic % chromium was 
determined by the application of powder and single-crystal X-ray diffraction methods. The crystal 
structure of this phase in the iron-molybdenum system was also determined by the use of powder 
and single-crystal methods, and found to be essentially the same as that  for the iron-chromium 
phase. Reliable information regarding the distribution of iron and chromium among the various 
positions could not  be obtained directly for a-FeCr. However, reasonably reliable information re- 
garding the distribution of iron and molybdenum in a-FeMo was obtained, and probably the 
chromium atoms in a-FeCr occupy substantially the same positions as the molybdenum atoms in 
a-FeMo. 

The iron-chromium a-phase structure has space group D~-P4~/mnm, with a 0 = 8.800 A and 
c o = 4.544 A. The iron-molybdenum presumably has the same space group, and has a 0 = 9.188 A 
and co = 4.812 A. There are 30 atoms in the unit  cell. The positions of the atoms are at the points 
of two pseudo-hexagonal nets normal to c at  z = 0 and z = ½. Eight  of the 30 atoms are displaced 
parallel to c by approximately the distance ~c 0, so that  there are four atoms at  z ~ ¼ and four at  
z ~ ~. The structure is nearly identical with that  found independently by Tucker for fl-uranium. 

1. Introduction 

The a phase is a bri t t le  phase of complex s t ructure  
which occurs in a number  of b inary  and t e rna ry  sys- 
tems involving t ransi t ion-group elements, in partic- 
ular  vanad ium through nickel in the  first long period 
and  molybdenum in the  second. Systems in which the 
a phase has been found to occur, with composit ions 
as determined after anneal ing at  elevated tempera-  
tures, are listed in Table 1 (Duwez & Baen, 1950; 
Greenfield & Beck, 1954). 

* Part of this work was carried out under Contract N6onr- 
24432 between the Office of Naval Research and the Califor- 
nia Institute of Technology, and part with support of a grant 
from the Carbide and Carbon Chemicals Corporation. Contribu- 
tion 1~o. 1916 from the Gates and Crellin Laboratories of 
Chemistry. 

t Ethyl Corporation Predoctoral Fellow, 1950-1951. 
:~ Present address: Department of Chemistry, Massachusetts 

Institute of Technology, Cambridge, Mass., U.S.A. 

The a phase has a characterist ic powder diffract ion 
pat tern .  I t  contains a group of about  eight s trong lines 
with spacings close to 2 •, only a few very weak lines 
at  larger spacings, and only a few weak lines with 
spacings in the  range 1-8-1.3 A. These general features 
are not  unique to the  a phase;  other  phases, such as the  
# phase (FeTW 6 and Fe7M%, Arnfel t  & Westgren,  1935; 
C%Ws, Magneli & Westgren,  1938; C%Mo e, Henglein 
& Kohsok,  1949), and the phases designated 5, P, 
and R (in the respective systems Ni-Mo, Cr-Ni-Mo,  
and Cr-Co-Mo; Rideout  et al., 1951) give similar pow- 
der diffraction pat terns .  The a phase has often been 
described as non-magnetic ,  but  i t  has been found to be 
ferromagnetic  with a low Curie tempera ture  (about 
- 1 1 3  ° C.; Beck, 1952). The a phase in the  i ron-  
chromium system is of some technological impor tance  
in connection with stainless steels. 

Previous a t t empts  to determine the crystal  struc- 
ture  of the a phase have been unsuccessful for the 


